
 

 

 

 

This project has received funding from the European Unionôs Horizon 2020 research and 
innovation programme under grant agreement n: 761999 

 

 

 

EasyTV: Easing the access of Europeans with disabilities to converging 
media and content. 

 

D3.1 Sign language capturing technology preliminary version 

 

 

 

EasyTV Project 

H2020. ICT-19-2017 Media and content 

convergence. ï IA Innovation action. 

Grant Agreement nÁ: 761999 

Start date of project: 1 Oct. 2017 

Duration: 30 months  

Document. ref.: 

 

 

 

 

 



 D3.1 Sign language capturing technology preliminary version  

  

 2 

Disclaimer 

This document contains material, which is the copyright of certain EasyTV contractors, and may 
not be reproduced or copied without permission. All EasyTV consortium partners have agreed to 
the full publication of this document. The commercial use of any information contained in this 
document may require a license from the proprietor of that information.  The reproduction of this 
document or of parts of it requires an agreement with the proprietor of that information. The 
document must be referenced if is used in a publication. 

 

The EasyTV Consortium consists of the following partners: 

 Partner Name Short 
name 

Country 

1 Universidad Polit®cnica de Madrid UPM ES 

2 Engineering Ingegneria Informatica S.P.A. ENG IT 

3 
Centre for Research and Technology Hellas/Information 
Technologies Institute 

CERTH GR 

4 Mediavoice SRL MV IT 

5 Universitat Aut¸noma Barcelona UAB ES 

6 Corporaci· Catalana de Mitjans Audiovisuals SA CCMA ES 

7 ARX.NET SA ARX GR 

8 
Fundaci·n Confederaci·n Nacional Sordos Espa¶a para la 
supresi·n de barreras de comunicaci·n  

FCNSE ES 

  



 D3.1 Sign language capturing technology preliminary version  

  

 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution level: 

PU = Public,  

RE = Restricted to a group of the specified Consortium,  

PP = Restricted to other program participants (including Commission Services),  

CO = Confidential, only for members of the LASIE Consortium (including the Commission Services) 

 

PROGRAMME NAME: 
H2020. ICT-19-2017 Media and content convergence.  

convergence. ï IA Innovation action 

PROJECT NUMBER: 761999 

PROJECT TITLE: EASYTV 

RESPONSIBLE UNIT: CERTH 

INVOLVED UNITS: CERTH, UPM 

DOCUMENT NUMBER: D3.1 

DOCUMENT TITLE: Sign language capturing technology preliminary version 

WORK-PACKAGE: WP3 

DELIVERABLE TYPE: R 

CONTRACTUAL DATE OF 
DELIVERY: 

20-09-2018 

LAST UPDATE: 20/09/2018 

DISTRIBUTION LEVEL: PU 



 D3.1 Sign language capturing technology preliminary version  

  

 4 

Document History 
VERSION DATE STATUS AUTHORS, REVIEWER DESCRIPTION 

v.0.1 21/08/2018 Draft Kiriakos Stefanidis 
(CERTH) 

Table of Contents 

definition and  

document structure 

v.0.2 13/09/2018 Draft Mar²a Poveda Villal·n 

(UPM) 

Added section 8.4 

v.0.3 20/09/2018 Final Kiriakos Stefanidis, 
Anargyros Chatzitofis, 
Kosmas Dimitropoulos and 
Petros Daras        
(CERTH) 

Final version ready for 
review 

v.0.4 25/09/2018 Final Kiriakos Stefanidis, 
Kosmas Dimitropoulos        
(CERTH) 

Final version after 
reviews 

     

     

     

 



 D3.1 Sign language capturing technology preliminary version  

  

 5 

Definitions, Acronyms and Abbreviations 
ACRONYMS / 

ABBREVIATIONS 
DESCRIPTION 

API Application Programming Interface 

GUI Graphical User Interface 

CNN Convolutional Neural Network 

DOF Degrees of freedom 

DoA Description of Action 

FPS Frames Per Second 

  

 

  



 D3.1 Sign language capturing technology preliminary version  

  

 6 

Table of Contents 
 

1.  INTRODUCTION ................................................................................................................................... 10 

2.  ARCHITECTURE ................................................................................................................................... 11 

2.1. Input & output .................................................................................................................................... 11 

2.2. The phases of the capturing process ................................................................................................ 11 

3.  CAPTURING SETUP ............................................................................................................................ 13 

3.1. Sensor technologies for hand tracking ............................................................................................. 13 

3.2. Proposed setup ................................................................................................................................ 16 

4.  SIGN ACQUISITION ............................................................................................................................. 18 

4.1. Signer and admin ............................................................................................................................. 18 

4.2. Acquired frames and video generation ............................................................................................ 18 

5.  USER ANNOTATION ............................................................................................................................ 20 

5.1. Isolating the signs ............................................................................................................................. 20 

5.2. Annotation with subtitles................................................................................................................... 20 

5.3. Synchronized video trimming ........................................................................................................... 20 

5.4. Semi-automatic annotation tool ........................................................................................................ 21 

6.  KEYPOINT DETECTION ...................................................................................................................... 22 

6.1. Overview........................................................................................................................................... 22 

6.2. Detecting 2D keypoints .................................................................................................................... 22 

6.3. Generating 3D keypoints .................................................................................................................. 26 

7.  MOTION REFINEMENT ........................................................................................................................ 27 

7.1. Errors in motion data ........................................................................................................................ 27 

7.2. Keypoint reconstruction .................................................................................................................... 27 

8.  EXPORT ................................................................................................................................................ 28 

8.1. Types of files .................................................................................................................................... 28 

8.2. Choosing the right file format for motion data .................................................................................. 28 

8.3. Uploading the files to the crowdsourcing platform ........................................................................... 31 

8.4. Input to multilingual ontology ............................................................................................................ 31 

8.5. Avatar playback ................................................................................................................................ 32 

9.  THE EASYTV SIGNER3D APPLICATION ........................................................................................... 34 

9.1. Overview........................................................................................................................................... 34 

9.2. User interface ................................................................................................................................... 34 

9.3. Implementing the motion capturing phases ..................................................................................... 35 

9.4. First use: creating a database for Greek Sign Language ................................................................ 35 

10.  CONCLUSIONS .................................................................................................................................... 36 

11.  REFERENCES ...................................................................................................................................... 37 



 D3.1 Sign language capturing technology preliminary version  

  

 7 

 

List of Figures 
 

Figure 1: Schematic representation for the input and output of the capturing module. .................. 11 

Figure 2: Pipeline diagram demonstrating the six phases implemented in the EasyTV capturing 
technology. .................................................................................................................................... 12 

Figure 3: Hand tracking sensors: (a) Gloves, (b) Leap Motion, (c) Myo armband, (d) RGB camera, 
(e) Microsoft Kinect. ...................................................................................................................... 13 

Figure 4: Testing a multi-view setup in visual computing lab at CERTH. ........................................ 16 

Figure 5: Setting up the position of the signer. .............................................................................. 18 

Figure 6: Capturing color and depth frames for Sign Language using the Microsoft Kinect v2.0 
sensor. Note that the depth frames are totally aligned with the corresponding color frames. ......... 19 

Figure 7: Example of a video trimming software. ........................................................................... 20 

Figure 8: Proposed SLR methodology [6]. Each data stream is shown with a different colour. ...... 21 

Figure 9: Hand keypoints. ............................................................................................................. 24 

Figure 10: Body keypoints. ............................................................................................................ 24 

Figure 11: Facial keypoints............................................................................................................ 25 

Figure 12: 2D keypoints detected for hands and upper body of a signer speaking Sign Language.
 ..................................................................................................................................................... 25 

Figure 13: 3D keypoints drawn in OpenGL for Sign Language, formed by merging the 2D keypoints 
shown in Figure 11 with the corresponding values from the aligned depth frames. ....................... 26 

Figure 14: Green color: An ideal keypoint detection, Yellow color: An imperfect detection with 
missing keypoints, Red color: Keypoints after a motion refinement process. ................................. 27 

Figure 15: An example BVH file. ................................................................................................... 29 

Figure 16: An example JSON file for motion capture data. ............................................................ 30 

Figure 17: An example of a JSON format for describing Sign Language content........................... 31 

Figure 18: Adobe Fuse CC 3D Model. ........................................................................................... 32 

Figure 19: Signer avatar interprets the word ñnameò. .................................................................... 33 

Figure 20: A preliminary version of the Signer3D main user interface. ........................................... 34 

Figure 21: Creating a database for Greek Sign Language using the preliminary version of 
Signer3D. ...................................................................................................................................... 35 

 

 

 
  



 D3.1 Sign language capturing technology preliminary version  

  

 8 

List of Tables 
 

Table 1: Requirements for 3D reconstruction methods. ................................................................. 17 

 

  



 D3.1 Sign language capturing technology preliminary version  

  

 9 

Executive Summary 
This document is the preliminary version of the deliverable D3.1 concerning the development of the 
EasyTV capturing technology. This technology will be used for capturing the motion of the signers, 
i.e., persons speaking Sign Language. The main points outlined in this deliverable are the 
following: 

¶ A multi-phase architecture for the development of the EasyTV capturing technology has 
been designed in order to meet the requirements of the DoA. 

¶ Research on the current state-of-the-art of hand tracking sensor technologies has been 
conducted and the optimal setup for the requirements of capturing Sign Language has 
been decided. 

¶ A first implementation of motion data generation is provided. Deep network algorithms 
detect 2D keypoints for the hands, face and body of the signer and then 3D data is formed 
by merging the values from the corresponding depth frames. 

¶ Different types of exported files and formats are discussed. 

Finally, a first implementation of the EasyTV capturing module, i.e., motion capture application, is 
presented. In this initial version of the application, the different phases of the capturing process 
have been integrated to form the complete structure of the application, but contain parts that have 
not yet been implemented. These parts will be implemented in the following development steps 
and presented in the final version of the deliverable. 

 

 

 

 

 

 

 

 

 

 

 



 D3.1 Sign language capturing technology preliminary version  

  

 10 

1.  INTRODUCTION 

Motion capture systems are technologies that are used for capturing the motion of a person. The 
result of this process is data that encodes motion information and is used to animate digital 
character models in 2D or 3D computer animation. Such technologies have been successfully 
used in cinema, video games, sports and military training. Recently, there have also been some 
efforts to use motion capture for the playback of signing avatars. 

The EasyTV capturing technology aims to provide accurate motion capture for Sign Language 
translation tasks. These tasks will be defined by the moderator of the EasyTV crowdsourcing 
platform (T5.2) and distributed to Sign Language experts in order to fulfill them. Since speaking 
Sign Language involves not only hand gestures but also facial expressions, the technology has to 
be capable of capturing all necessary information for any sign and thus include an accurate hand 
tracking technology, as well as, detectors for the face and body of the signer. The results exported 
by this module include text, video, and most importantly, motion files. This data will be uploaded to 
the EasyTV crowdsourcing platform.  

The present document is organized as follows: 

¶ Chapter 2 presents the architecture of the capturing technology conforming to the EasyTV 
DoA. 

¶ Chapter 3 gives an overview of the existing hand tracking technologies and proposes a 
capturing setup that fits the requirements and constraints of Sign Language. 

¶ Chapter 4 describes the acquisition phase where the signer speaks Sign Language on the 
capturing setup and images are recorded. 

¶ Chapter 5 presents an initial design for the annotation tool which will be used for 
annotating the captured videos with text. 

¶ Chapter 6 analyzes the detection phase where 2D keypoints are detected and 3D data is 
generated. 

¶ Chapter 7 gives an overview of the refinement process where errors in the motion data are 
eliminated and values are restored. 

¶ Chapter 8 discusses the data files that are exported by the capturing module, as well as, 
their utilization by the crowdsourcing platform and other EasyTV services. 

¶ Chapter 9 outlines the conclusions of this work. 

 

 

 

  



 D3.1 Sign language capturing technology preliminary version  

  

 11 

2.  ARCHITECTURE 

This chapter outlines the aspects concerning the architecture of the EasyTV capturing technology. 
These include the interconnection with other EasyTV services (i.e., external architecture), as well 
as, the internal components that make up the capturing technology (i.e., internal architecture). 

2.1. Input & output 

The input and output of the capturing technology is defined in document D1.3 ñFirst release of the 
EasyTV system architectureò which describes the overall EasyTV architecture and the 
interconnections between its modules and services. According to this document, the input of the 
EasyTV capturing technology is given by an expert signer, that is, a person who has excellent 
knowledge of Sign Language and is capable of correctly signing in front of the capturing sensor. 
The input acquired by the capturing software concerns different types of image data (i.e., RGB-D) 
that capture the requested sign or signs, but also, text annotations that describe the meaning of 
each sign. As it will be described latter in this document, these two actions are performed in a 
sequential manner with the acquisition of the image data performed first and the user annotation 
following next. The visual content is processed by detection algorithms in order to extract the 
necessary information to compose the motion information of the signing. 

The output of the capturing module is a collection of files that are uploaded to the crowdsourcing 
platform. The uploaded data will be stored properly into repositories and be available for use by 
other EasyTV services and components. 

 

 

Figure 1: Schematic representation for the input and output of the capturing module. 

 

A schematic representation for the input-output of the capturing module is given in Figure 1. In this 
figure, the crowdsourcing platform issues a task for the signer, the signer makes the requested 
signs and the capturing module records the images and extracts the motion data. As we can see, 
there are different types of annotation procedures: the expert signer initially annotates sentences 
but can also break the sentences into words in a later stage. Moreover, a semi-automatic 
annotation mechanism can be used for making the process easier for the signer by automatically 
recommending the right translation for a given sign. At the end of the procedure, the data is 
uploaded to the Sign Language crowdsourcing platform and stored into repositories. The 
crowsourcing platform can generate additional tasks to the same signer and the whole process is 
then repeated.      

2.2. The phases of the capturing process 

The EasyTV capturing technology consists of a number of phases that meet the requirements of 
the EasyTV project for Sign Language motion capture. These phases form a pipeline architecture 



 D3.1 Sign language capturing technology preliminary version  

  

 12 

where the output of each phase is given as input to the next one. The architecture includes phases 
for the acquisition of images containing the signs, the annotation of each sign, the detection of 
keypoints for the hands, body and face, the generation of 3D data, the correction of motion data, 
and the formating of motion files.  A graphical representation of this interconnection between the 
phases of the capturing process is given in Figure 2.  

 

Figure 2: Pipeline diagram demonstrating the six phases implemented in the EasyTV capturing 
technology. 

 
More specifically, a brief description for each phase is given below: 
 

¶ Acquisition: The signer makes the requested signs and the capturing software 
acquires images from the sensor. There are two types of images captured by the 
sensor: those containing RGB information and others containing depth information. 
Both types though are necessary for the generation of 3D motion data. Also, color and 
depth videos can be generated in order to display the captured content to the user (e.g., 
admin or signer) in the annotation phase. 

¶ Annotation: The admin or the signer reviews the captured content and annotates 
video. The annotation concerns the mapping of visual content to text (i.e., subtitles). 
This process can involve the annotation of the whole video with a single phrase or the 
trimming of the video, that is, the video is divided into segments with each segment 
representing a sign and annotated with text.  

¶ Detection: Algorithms detect keypoints on frames. Keypoints are points of interest on 
the captured frames that identify the important visual content on the image. In our case, 
the important parts of the images are the hands, face and body of the signer. The 
keypoints detected can be either 2D or 3D keypoints. Currently, we use a detection 
procedure for 2D keypoints. The number of the keypoints and their position depends on 
the training of the detection algorithms. In the current state-of-the-art, such detection 
algorithms are usually deep neural networks that are trained on annotated images.  

¶ Reconstruction: This is the method for generating 3D keypoints. Since our detected 
keypoints are two-dimensional, we also need to infer the depth information in order to 
compose 3D keypoints. The 3D keypoints are necessary for generating motion data that 
can be imported into the EasyTV realistic Sign Language avatar (T2.4). 

¶ Refinement: Concerns a method for automatic error correction in the detection 
process. This phase is required due to noise in the detected data or mis-detections.  

¶ Export: Data that is exported in proper file formats for compatibility with other EasyTV 
services. The most important files exported are the motion files supported by 3D 
animation software and avatar technologies. 

 
A more detailed analysis of each phase is given in the following chapters of this document. 



 D3.1 Sign language capturing technology preliminary version  

  

 13 

3.  CAPTURING SETUP 

This chapter provides a brief overview of the existing sensor technologies used for hand tracking, 
as well as, the overall setup that is considered to be suited for the purposes of EasyTV and the 
capturing process of Sign Language. 

3.1. Sensor technologies for hand tracking 

Hand tracking techniques can be divided into three major categories: 

¶ Tracking with interface where inertia and optical motion capture (mocap) systems are 
used). 

¶ Tracking without interface where just cameras are used. 
¶ Other tracking techniques. 

 
Figure 3 presents some examples of the most popular sensors from the first two categories. 
 

 

Figure 3: Hand tracking sensors: (a) Gloves, (b) Leap Motion, (c) Myo armband, (d) RGB camera, (e) 
Microsoft Kinect. 

 

3.1.1 Hand tracking with interface 

Á Inertial motion capture gloves 

Inertial motion capture systems are able to capture finger motions by sensing the rotation of each 
finger segment in 3D space. Applying these rotations to kinematic chain, the whole human hand 
can be tracked in real time without occlusion and through wireless communication.  

Hand inertial motion capture systems, like for example Synertial mocap gloves [10], are using tiny 
IMU based sensors, located on each finger segment. For most precise capture, at least 16 sensors 
have to be used. There are also mocap gloves models with less sensors (13 / 7 sensors) for which 
the rest of the finger segments is interpolated (proximal segments) or extrapolated (distal 
segments). The sensors are typically inserted into textile gloves which makes the use of the 
sensors more comfortable.  

Because the inertial sensors are capturing movements in all 3 directions, flexion, extensions and 
abduction can be captured for all fingers and thumb. The captured movements are then interpreted 



 D3.1 Sign language capturing technology preliminary version  

  

 14 

by the software that accompanies the gloves, and gestures can then be categorized into useful 
information, such as to recognize Sign Language or other symbolic functions. 

Expensive high-end wired gloves can also provide haptic feedback which is a simulation of the 
sense of touch. This allows a wired glove to be used also as an output device. Traditionally, wired 
gloves have only been available at a high cost. Besides sign recognition, wired gloves are often 
used in virtual reality environments and in robotic applications to mimic human hand movement by 
robots. Some examples include CyberGlove Systems [7], Manus VR [8], VR gluv [9], Synertial 
gloves [10]. 

Inertial sensors have two main disadvantages connected with finger tracking:  

¶ Problem to capture absolute position of the hand in space. 

¶ Problem with magnetic interference - metal materials use to interfere with sensors.  

The second problem may be noticeable mainly because hands are often in contact with different 
things, often made of metal. The current generations of motion capture gloves are able to 
withstand unbelievable magnetic interference. The magnetic immunity depends on multiple factors: 
manufacturer, price range, and number of sensors used in mocap glove. 

Á Optical motion capture systems and marker functionality 

Some of the optical systems, like Vicon [11] or ART [12], provide hand motion capture with the use 
of markers. In each hand there is a marker per each ñoperativeò finger. Three high-resolution 
cameras are responsible for capturing each marker and measure its positions. The coordinates in 
3D of the labels of these markers are produced in real time with other applications, providing that 
the markers are visible to the cameras. 

Markers operate through interaction points, which are usually already set. Because of that, it is not 
necessary to follow each marker all the time; the multipointers can be treated in the same way 
when there is only one operating pointer. To detect such pointers through an interaction, ultrasound 
infrared sensors are enabled. In the case of bad illumination, motion blur, malformation of the 
marker or occlusion, the system allows following the object even though some markers may not be 
visible. Because the spatial relationships of all the markers are known, the positions of the markers 
that are not visible can be computed by using the markers that are known. There are several 
methods for marker detection like border marker and estimated marker methods. 

3.1.2 Hand tracking without interface 

At hand tracking without interface methods, image analysis techniques are applied to detect the 
hand part from images captured with RGB or RGB-D cameras. To detect hand gesture one must 
first segment the hand image from the background. The traditional method of using single RGB 
camera relies on skin colour for segmentation and is unreliable due to a wide variation in user skin 
colour. Depth cameras make gesture detection much more reliable because depth can be used for 
image segmentation. Shape analysis is then applied to the segmented foreground (hand) to detect 
and track fingertips and palm to recognize gesture. 

In general, most commercial systems of this category perform the following steps: 

¶ Point and pinch gesture recognition: taking into account the points of reference that are 
visible (fingertips). 

¶ Pose estimation: a procedure which consists of identifying the position of the hands 
through the use of algorithms that compute the distances between positions. 

3.1.3 Examples of modern mocap systems 

Á HTC Vive 

Vive [13] is a virtual reality headset designed with SteamVR in mind which comes with two wireless 

http://www.htcvr.com/


 D3.1 Sign language capturing technology preliminary version  

  

 15 

controllers that act as the virtual ñarmsò to track hand and arm movements in space in real time. 

Á iMotion 

Created by a California-based startup Intellect Motion, iMotion [14] is a motion controller that 
creates haptic feedback by hand-and-arm interactions through a ñvirtual touchscreenò. The iMotion 
controller provides pinpoint accuracy in three-dimensional space by utilizing a deviceôs camera, 
such as those found in smartphones, tablets, gaming consoles, and PCs. By installing an extra 
software on a compatible device, the iMotion turns the userôs hands into a controller for on-screen 
objects in games, VR experiences, and even the simple navigation of a deviceôs homescreen.  

Á Leap Motion 

Leap Motion [15] is a handsfree solution specifically designed for virtual reality. The Leap Motion 
for Virtual Reality Mount is a camera that is mounted onto VR headsets in order to give accurate 
depth tracking and motion sensing and enhance VR experiences by turning the userôs hands as 
the sole controller of anything on screen. Leap Motion provides a wide field of view of 135 degrees, 
almost-zero latency, pinpoint accuracy, and high robustness. It is still in beta stage, meaning its 
development is in progress. Some compatible VR devices for the mount are the Oculus Rift 
Development Kits 1 and 2. 

Á Microsoft Handpose 

Developed by Microsoft, Handpose [16] is a cutting-edge hand tracking technology that uses the 
Kinect motion-sensing camera to detect articulated hand movements in space in real time. What 
sets apart Handpose from other haptic technologies in development is its high degree of 
robustness in tracking errors, and its fast data processing that compensates for these possible 
errors. The Kinect camera scan tracks hand movements within the cameraôs range of view or 
focus, whether the hand is far or near the camera. 

Á MindLeap 

During the recent Game Developers Conference in San Francisco, Swiss neurotechnology 
company MindMaze [17] unveiled its one-of-a-kind technology that benefits virtual reality. Itôs called 
MindLeap, and is made by Swiss neurotechnology company MindMaze. It is a technology that 
reads neural signals to perform certain tasks. But besides decoding neural signals, it can also track 
hand movements using advanced tracking sensors. MindLeap was primarily developed for medical 
applications, but is also used in the VR section. It is still in continuous development as the 
MindLeap technology is being offered as an SDK for third-party developers to enhance certain 
experiences such as in gaming and VR. 

Á Myo 

Developed by Thalmic Labs [18], Myo is an armband worn by the user to be used as an interaction 
device for many practical applications. By using electrical signals in the userôs muscles, Myo can 
interpret these signals as perceived input and uses it to trigger certain on-screen functions in a 
variety of interfaces. It is versatile such that it can be used to control computers, smartphones, and 
tablets. Myo is purely wireless, powered by Bluetooth to connect to third-party devices. As of now, 
it is currently on sale but the technology is currently being developed to work with other tech 
devices in the near future, including gaming consoles and VR gear. 

Á Nimble Sense 

Nimble Sense [19] is a hand tracking technology developed by startup Nimble VR. It is actually a 
depth camera that uses depth information to track hand movement with a high level of accuracy 
and precision. It is suited as an accessory to the Oculus Rift VR headset, as it perfectly sits on top 
of the headset. With a low latency, it accurately tracks hand input using both a photonic mixer 
device and an eye-safe laser that effectively senses the location of the userôs hands in space in 
real time. An API makes this gathered data interpreted into input that translates to manipulations 
and interactions in the virtual reality interface. 

http://www.getimotion.com/
https://intellectmotion.com/
https://www.leapmotion.com/product/vr
https://www.leapmotion.com/
https://www.leapmotion.com/product/vr
https://www.leapmotion.com/product/vr
http://research.microsoft.com/en-us/projects/handpose/
http://www.mindmaze.ch/vr/
http://www.mindmaze.ch/
https://www.thalmic.com/
https://www.thalmic.com/
https://www.kickstarter.com/projects/nimblevr/nimble-sense-bring-your-hands-into-virtual-reality
https://www.kickstarter.com/projects/nimblevr/nimble-sense-bring-your-hands-into-virtual-reality
http://nimblevr.com/


 D3.1 Sign language capturing technology preliminary version  

  

 16 

3.2. Proposed setup 

While the choice for the best hand tracking sensor is of central importance to reach an optimal 
setup for the capturing process of EasyTV, the hand tracking problem is considered to be an open 
research topic entailing several difficulties for its solution. In fact, in July 24, 2017, Oculus Chief 
Scientist Michael Abrash posted an article on occulus blog website entitled ñVRôs Grand Challenge: 
Michael Abrash on the Future of Human Interactionò in which he mentioned the challenges posed 
by the hand tracking problem [20]: 

ñUnfortunately, hands have about 25 degrees of freedom and lots of 
self-occlusion. Right now, retroreflector-covered gloves and lots of 
cameras are needed to get to this level of tracking qualityò 

The status of the problem still remains the same up till now. Despite the apparent trade off between 
cost and quality, there are other practical issues one has to consider, such as, the interconnection 
between the devices and the computational requirements for processing the acquired data. Such 
matters prevent us from combining a large number of hand tracking sensors into the capturing 
setup of EasyTV. 

The nature of Sign Language imposes additional constraints on the selection of the right sensor 
technology for the capturing process. More specifically, the signer must be able to make any 
movement he/she wants, as naturally as possible, without any disturbance from the capturing 
equipment. For example, wearing  hand tracking gloves might disturb the signer and prohibit 
him/her from making certain types of gestures, such as, hand movements around the head, turning 
of the wrists, or splitting hands. This also holds true for the rest of the obtrusive hand tracking 
sensors like arm bands or even small finger trackers. Therefore, we consider that obtrusive 
tracking technologies are not suitable for capturing Sign Language motion. 

Since we omitted the use of gloves and other obtrusive sensors, we turned our attention to 
markerless tracking technologies. As discussed in the previous section (3.1), markerless sensors 
have the advantage of being unobtrusive and thus allow any hand movements by the signer. For 
that reason, we continued our experiments by testing simple RGB cameras, as well as, more 
advanced RGB-D sensors like Microsoft Kinect v2.0 and Intel RealSense, which additionally 
capture depth information. We also tested setups consisting of multiple RGB-D sensors. An 
example of a multi-view capturing setup is shown in Figure 4. 

 

 

Figure 4: Testing a multi-view setup in visual computing lab at CERTH. 



 D3.1 Sign language capturing technology preliminary version  

  

 17 

Concerning the generation of 3D data, we have focused our attention primarily on two 3D 
reconstruction methods: multi-view 3D reconstruction and 3D reconstruction using depth 
alignment. Comparing these two methods we can find many differences in their requirements. 
More specifically, a multi-view setup (see Figure 4) requires multiple RGB sensors for capturing 
images from different angles, and for this reason it raises the cost of the equipment. Also, each 
sensor needs to be connected to a separate personal computer and this further raises the cost. In 
order to extract the depth information, this reconstruction method applies the technique of 
triangulation, in which a point is estimated in 3D space given its projections onto two, or more 
images [21]. This process is very computational demanding and usually done locally on the PCs 
performing the capturing. For that reason, the specifications for the PCs need to be high-end. Also, 
the quality of the 3D reconstruction is proportional to the number of sensors.  

Another issue is synchronization. This means that the multiple views of each frame must be 
synchronized in order to achieve good results in triangulation. The problem here lies in that real 
synchronization can only be succeded through hardware synchronization, that is, via an external 
pulse generator signaling the start of the acquisition process for the imaging devices. Even the 
best software synchronization solutions do not produce perfectly accurate results. Last requirement 
for multi-view 3D reconstruction is calibration. All cameras must be calibrated in order to get the 
intrinsic and extrinsic parameters of each imaging device. This raises many practical issues in a 
capturing setup. If, for any reason, one camera is moved out of its initial position, the calibration 
process must be repeated. This is an important issue because the calibration process is non-trivial 
and must be done by a qualified engineer and not by simple users of the software. 

On the contrary, a 3D reconstruction procedure based on aligned depth images is much more 
practical and has a lot less requirements. More specifically, it requires only one imaging sensor and 
one PC. This sensor though, has to be an RGB-D device in order to also provide depth 
information. Moreover, the PC does not need to be a high-end machine because there are no 
processing-demanding tasks for estimating the depth values. Also, there is no need for 
synchronization since we only acquire images from one viewpoint. Finally, we are alleviated from 
any calibration procedure. A summary of the comparison between the two reconstruction methods 
is given in Table 1. 

 

Table 1: Requirements for 3D reconstruction methods. 

 
 
 

To summarize, our research and experimental testing lead us to head towards a capturing setup 
that can be both accurate in terms of generating high quality 3D data, but also practical in the 
sense that it makes the process of capturing Sign Language easier. The proposed setup requires 
just a single RGB-D sensor and one PC or laptop running the EasyTV capturing application. 
Although the requirements for depth alignment and extraction are negligible as shown in Table 1, 
the processing requirements of the keypoint detection phase (see chapter 6) require the PC being 
a high-end machine. A final note about the setup is that lighting conditions in the room must be 
adequate. 



 D3.1 Sign language capturing technology preliminary version  

  

 18 

4.  SIGN ACQUISITION 

This chapter discusses how the signer speaks Sign Language in front of the sensor, how images 
are acquired by the capturing module and video is generated. 

4.1. Signer and admin 

First of all, the admin prepares the setting for the recordings. A green panel can be optionally 
placed on the wall to facilitate the foreground-background separation during post-processing, the 
Kinect sensor is placed around 2 meters away from the spot of the signer, marked with a white line 
on the floor and the lighting is adjusted accordingly to achieve optimum conditions of capturing. 

Before the start of each capturing session, the admin describes explicitly the recording procedure 
to the signer. There is a predefined sequence of expressions that the signer has to do, one after 
the other, in front of the Kinect sensor. The signer is instructed to stand at neutral position beside 
the white line marked on the floor (Figure 5). Once the admin gives the signal that the recording is 
starting, the signer should make the first expression of the sequence and then return to neutral 
position for 1 second. After that, the signer makes the next expression and returns to neutral 
position again. These steps are repeated until all expressions are collected and the recording 
session is completed.  

 

 

Figure 5: Setting up the position of the signer. 

 

4.2. Acquired frames and video generation 

Color images are acquired via a RGB sensor. As we described in the previous sections, we chose 
RGB-D as our preferred sensor technology for capturing signs. One of the RGB-D sensors that we 
used for testing is Kinect. More specifically, the native resolution of its color frames is fixed at Full 
HD quality, i.e., ρωςπ Ø ρπψπ  pixels captured at a frame rate of 30 fps. On the other hand, the 

resolution of the depth images is υρς Ø τςτ  also taken at 30 fps. While its SDK provides detectors 
that capture skeleton points for the body and the face, it doesnôt include a keypoint detector for the 
hands. Also, the keypoints extracted may not be the preferable for Sign Language motion capture. 
For that reason we included thrid-party detectors that meet the requirements of the EasyTV project 
and provide accurate hand tracking. More details for the detection phase are given in chapter 6. 



 D3.1 Sign language capturing technology preliminary version  

  

 19 

The alignment of the color and depth frames has to be taken into consideration. This means that 
color and depth frames can have the same resolution. In fact, there is the choice of mapping depth 
frames to color space or mapping color frames to depth space. As we explain later in section 6.3, 
the purpose for aligning color and depth frames is to extract for every RGB pixel the corresponding 
depth value, thus generating 3D data by using 2D keypoint detectors on RGB images. Figure 6 
shows an example of RGB and depth frame alignment. 

 

Figure 6: Capturing color and depth frames for Sign Language using the Microsoft Kinect v2.0 
sensor. Note that the depth frames are totally aligned with the corresponding color frames. 

 

When the acquisition process terminates and all RGB and depth frames have been collected, they 
are merged into videos. The purpose for generating videos of the recorded content is two-fold: 

¶ The admin of the capturing process can review the recordings in the annotation phase. 

¶ The moderator of the crowdsourcing platform can review the recordings in the validation 
phase. 

The videos can be exported in a popular file format, such as, the mp4 or avi format. For the 
generation of the videos a practical solution is the ffmpeg software [22]. ffmpeg is free software 
meaning that it can be integrated with the EasyTV capturing technology. It is a command-line 
application for processing video or audio files, and is widely used for format transcoding, basic 
editing (trimming and concatenation), and video scaling. Its trimming capabilities make it an even 
more favorable solution because a separate tool will not be needed for the phase of video trimming 
(chapter 7). 

 

 

 

 



 D3.1 Sign language capturing technology preliminary version  

  

 20 

5.  USER ANNOTATION 

When RGB and depth images are captured, the signer must annotate them in order to map the 
signs to their corresponding meaning. In the rest of this chapter, we consider that we have 
captured a video containing more than one sign, i.e., a video which corresponds to a phrase rather 
than a single word. 

5.1. Isolating the signs 

In the first step, the user must properly separate the different signs that are contained in the video. 
For that reason, the annotation tool must include: 

a. A display screen for replaying the RGB video captured in the acquisition phase.  
b. A slide bar and/or input fields for time, through which the user can specify the start time and 

the end time of different portions in the video.  

Through this simple GUI, the user reviews the video and marks the time segments that enclose the 
individual signs. An example of such user interface for video trimming is shown in Figure 7.   

5.2. Annotation with subtitles 

Alongside the isolation of the signs, the user has to also specify the text corresponding to the 
meaning of each sign. Therefore, the graphical interface of the annotation tool must include a 
textbox for receiving the userôs input, which must be correlated with each marked time region. 

5.3. Synchronized video trimming 

The last step of the annotation phase concerns the trimming of the video. The regions marked by 
the user are given to a video trimming software in order to cut the video into parts. Each part 
corresponds to an individual sign that the signer made in the acquisition phase. We have to note 
here that we capture both RGB and depth information so we must trim both streams and not ruin 
the correspondance between them. Therefore, the trimming process has to be synchronized 
among the two streams and result into a RGB and a depth video segment for each sign. One of the 
most practical solutions for realizing the trimming process is the ffmpeg software. We can use this 
software as a separate executable that accepts command line arguments. For this reason, this 
application can be more easily integrated to a graphical user interface for sign isolation and 
annotation.  

 

Figure 7: Example of a video trimming software. 



 D3.1 Sign language capturing technology preliminary version  

  

 21 

5.4. Semi-automatic annotation tool 

The purpose of the semi-automatic annotation tool is to enable the automatic detection and 
classification of signs in a signed sentence, thus assisting an annotator during his/her task. To this 
end, we propose a Sign Language Recognition (SLR) methodology that can accurately and 
robustly classify signs [6]. A block diagram of the proposed SLR methodology is presented in 
Figure 8. 

 

 

Figure 8: Proposed SLR methodology [6]. Each data stream is shown with a different colour. 

 

The proposed methodology relies on the extraction of video (i.e., image and optical flow) and 
skeletal (i.e., body, hand and face) features from video sequences. Established deep learning 
methods are employed in order to extract discriminative features from video sequences, compute 
motion between consecutive frames (optical flow) and extract skeletal data from images. All these 
features form 7 streams that are individually processed by recurrent neural networks, called Long 
Short-Term Memory (LSTMs) in order to derive temporal dependencies among the features. An 
extra network, called meta-learner is also employed to merge the information from all streams and 
compute additional features. Finally, all the derived information is fused in order to compute the 
optimal class for each tested video sequence. For further information about this SLR methodology, 
we urge the read to refer to the deliverable D3.3 ñRemote control with gesture/gaze controls 
preliminary versionò that was produced in the framework of the EasyTV project. 

 

 

 

 

 

 

 



 D3.1 Sign language capturing technology preliminary version  

  

 22 

6.  KEYPOINT DETECTION 

This chapter provides an analysis of the methods that were used to detect keypoints on the 
acquired images. In the current state of the capturing technology, we decided to use 2D keypoint 
detectors on RGB images and then infer the depth values in a following step.  

6.1. Overview 

There are many definitions for keypoints in literature. In fact, keypoints are usually referred to as 
interest points within an image. They are spatial locations, or points in the image that define what is 
interesting or what stands out in the image [1]. In other contexts though, they can be regarded as a 
set composed of (1) interest points, (2) corners, (3) edges or contours, and (4) larger features or 
regions such as blobs. The special characteristic about keypoints is that no matter how the image 
changes, i.e., whether the image rotates, shrinks/expands, is translated (i.e., if affine 
transformations are applied to the image) or is subject to distortion (i.e., a projective transformation 
or homography is applied to the image), one should be able to find the same keypoints in this 
modified image when comparing with the original image. 

Keypoints are found by specific algorithms that process the image. Such types of algorithms that 
detect keypoints are called detectors and find application in a wide area of computer vision tasks, 
such as, image processing and analysis, object recognition and classification, and also, motion 
capturing. Some desirable properties of a keypoint detector are: 

Á Accurate localization. 

Á Invariance against shift, rotation, scale, brightness change. 

Á Robustness against noise, high repeatability. 

6.2. Detecting 2D keypoints 

Sign Language detection is a very demanding process requiring the motion capture of gestures, as 
well as, body movements and facial expressions. For that reason, we need to detect keypoints not 
only for the hands of the signer, but also for the body and the face. In order to accomplish that, 
three distinct keypoint detectors need to be integrated with the capturing module. In the current 
state of the module, we decided to use the OpenPose library [23] as our preferred solution for the 
implementation of the detection phase. Our research indicated that this is the state-of-the-art 
solution for unobtrusive hand detection, and hence, optimal for capturing the motion of Sign 
Language. OpenPose is also a practical fit for the EasyTV capturing technology because it only 
requires RGB images as input for detecting keypoints. Thus, the software can work with any 
camera available. Except for hand detection, it also includes robust keypoint detectors for the face 
and the body, making it a complete keypoint detection suite that doesnôt require any extra third-
party software to integrate with. In fact, OpenPose can detect a total of 135 keypoints on the 
acquired RGB images, which are sufficient for accurately capturing the motion of the signer.     

Each keypoint detector in OpenPose is a deep neural network and, more specifically, a special 
type of CNN called Convolutional Pose Machine (CPN). CPNs have the ability to learn long-range 
dependencies among images and multi-part cues, and also, inherit a modular sequential design. 
These features combine with the advantages afforded by convolutional architectures, thus making 
the networks capable of learning feature representations for both image and spatial context directly 
from data. In the first stage, the convolutional pose machine predicts part beliefs from only local 
image evidence, while the convolutional layers in the subsequent stage allow the classifier to freely 
combine contextual information by picking the most predictive features. More comprehensive 
information about the architecture of a CPN can be found in [2].  

In order to avoid the problem of annotating databases for hand detection, the training process of a 
CPN is done using a technique called Multiview Bootstrapping. While a thorough analysis of this 
method is provided in [3], we will also mention some important aspects of it for the completeness of 



 D3.1 Sign language capturing technology preliminary version  

  

 23 

presentation. Multiview bootstrapping is an approach that allows the generation of large annotated 
datasets using a weak initial detector. More specifically, the weak detector is trained on a small 
annotated dataset in order to detect subsets of keypoints in the so called ñgood viewsò which are 
the views for a certain frame achieving the highest scores as evaluated by a heuristic scoring 
policy. A robust 3D triangulation procedure is then used to filter out incorrect detections. Images 
where severe occlusions exists are then labeled by reprojecting the triangulated 3D hand joints. 
The inclusion of the newly generated annotations in the training set, iteratively improves the 
detector, and thus, in each iteration we obtain more and more accurate detections. With this 
approach we generate geometrically consistent hand keypoint annotations using constraints from 
the multiple views as an external source of supervision. In this way, we can label images that are 
difficult or impossible to annotate due to occlusion.  

More formally, if ὨὍ is a keypoint detector on an image Ὅ, its output would consist of a set of 
tuples of position vectors  ὼ and confidence values ὧ, with each tuple corresponding to a certain 

keypoint, 

ὨὍᵐ ὼȟὧ  Ὢέὶ ὴɴ ρȣὖ  

 

An initial training set Ὕ consists of annotated images with a predefined set of  ὔ  keypoints, i.e., 
 

Ὕḧ Ὅȟώ  Ὢέὶ ὴɴ ρȣὔ  

 

We train an initial detector Ὠ by using stochastic gradient descent on dataset Ὕ, 

 

Ὠ ᴺὸὶὥὭὲὝ  

 

This detector is then used to produce a new dataset of labeled images, namely Ὕ. The bootstrap 
technique suggests that an improved detector can be generated if we construct a new training set 
by concatenating datasets  Ὕ  and  Ὕ, 

 

ὨᴺὸὶὥὭὲὝ᷾Ὕ  

 

This procedure continues until we find a keypoint detector that achieves high accuracy results on a 
given test set. 

As we mentioned above, the detectors are trained on datasets containing only ñgood viewsò. This 
is an important point to note because the inclusion of erroneously labeled frames in the training 
dataset will lead the iterative process to failure. While the selection of the valid frames could be 
realised by using uniform temporal subsampling on the videos, another technique is used which 
segments the video into windows of W frames (e.g., W=15 or W=30) and picks only the best frame 
from each window. By ñbestò we mean the frame that has the maximum sum of detection 
confidences for the different views. The mathematical formula with which scores are given to 
frames, is: 

 

ίὧέὶὩὢ ὧ

ᶰᶰ ȣ

 

 



 D3.1 Sign language capturing technology preliminary version  

  

 24 

Finally, the frames of the training set must be checked for errors. This validation is done manually 
by visual inspection of the top 100 frames in the training set. 

As we mentioned earlier, there is a detector for each part of the signerôs body. The hand detector 
finds 21 keypoints on each hand of the signer, that is, a total of ς ςρ τς keypoints are detected 
(Figure 9). These include keypoints on the tips of the fingers, other articulation points on the 
arches, as well as, one point on each wrisp of the signer. 

 

Figure 9: Hand keypoints. 

 

The body detector detects 18 keypoints (Figure 10). Concerning the arms of the signer, keypoints 
for the wrisps, the elbows and the shoulders are detected. Keypoints for the hips, the knees and 
the feet are detected for legs. Also, keypoints for the neck and the head of the signer are detected. 

 

 

Figure 10: Body keypoints. 



 D3.1 Sign language capturing technology preliminary version  

  

 25 

 

Finally, the face detector detects 70 keypoints (Figure 11). These keypoints include the contour of 
the face, the eye orbits and eyelids, two layers of points for the lips and also some points for the 
nose of the signer.  

 

 

Figure 11: Facial keypoints. 

 

In order to retrieve all the keypoints that are necessary for the accurate capturing of Sign 
Language motion, all three detectors must be executed upon each acquired frame. Considering 
that these detectors are deep neural networks and computations of just one deep network are 
heavy even in its inference phase, it is evident that the process of the overall keypoint detection is 
a very computational demanding task if done in parallel. Therefore, there is the option of executing 
the detectors in a sequencial manner, one after the other, or executing only two detectors in 
parallel. For example, we can execute the hand and body detectors first, and then the face 
detector by its own. As an example, we see in Figure 12 the hand and body detectors running in 
parallel and finding keypoints on a signer. 

 

 

Figure 12: 2D keypoints detected for hands and upper body of a signer speaking Sign Language. 



 D3.1 Sign language capturing technology preliminary version  

  

 26 

6.3. Generating 3D keypoints 

In order to provide avatar playback, the keypoints extracted from the captured images have to be 
mapped to specific control points on the avatar. Using a 2D detection algorithm, we only get the 
values corresponding to the width and height of an image which is not appropriate for controlling a 
3D avatar. We, therefore, need a technique to infer the depth dimension and, by using it, construct 
3D keypoints.  

As we mentioned earlier in section 3.2, it is more practical and reliable to use the aligned depth 
frames given by an RGB-D sensor over a multi-view 3D reconstruction solution. What we do is 
simply extracting the values from depth frames for each X and Y coordinate, and then merge all 
three values and store them in a single file. 

Another issue that we have to consider is that in case the avatar has fixed control points, the 
generated 3D keypoints from the detection phase need to map the positions of those control 
points. For example, if an avatar has a fixed control point on the hip, then the detection algorithm 
needs also to find that specific keypoint on the acquired images. If a mis-alignment exists between 
the avatar control points and the detector keypoints, then we either have to re-train the detection 
algorithm or to perform mathematical transformations in order to re-position the skeleton points 
properly. 

Figure 13 shows how the 3D keypoints look if we draw them using OpenGL. A signer made Sign 
Language gestures and images were captured using an RGB-D sensor.  In the detection phase, 
we initially found hand and body keypoints from RGB data using detection algorithms, and then, 
the depth values from the aligned depth frames were extracted to form 3D data. The result shows 
that in the given frame all keypoints were accurately detected without being affected by occlusions 
or noise. For this demonstration though, we did not use the face detector so no facial keypoints are 
show in the picture. 

 

 

Figure 13: 3D keypoints drawn in OpenGL for Sign Language, formed by merging the 2D keypoints 
shown in Figure 11 with the corresponding values from the aligned depth frames. 



 D3.1 Sign language capturing technology preliminary version  

  

 27 

7.  MOTION REFINEMENT 

In this chapter we describe the types of errors that can be encountered in the detection process 
and the techniques that can be applied in order to correct them. 

7.1. Errors in motion data 

Data from the detection process can contain errors. This means that either some keypoints are not 
detected by the algorithms, i.e., missing keypoints, or the algorithms produce erroneous values for 
some keypoints, i.e., mis-detections. The first case can occur due to occlusions by other body 
parts while the signer makes the gestures. For example, the gestures made for a certain sign might 
involve hiding some fingers behind the hand. When the acquired images are given to the detection 
algorithms, the keypoints of the hidden parts would not be detected. The second case can be 
encountered in the presence of noise. Such noise can be generated due to sensor specifications, 
room lighting conditions, or even colors of the clothes that the signer wears.  

Noisy data can have negative effects when propagated in formated motion data. As it will be 
explained later in chapter 8, most motion file formats follow a hierarchical structure under which the 
position of each body part is defined as an offset from the previous one. Thus, errors in joint 
detection will affect other joints in the hierarchy as well. It should be apparent that under such a 
scheme, even a single error occuring on a keypoint value might disturb the skeletal structure and 
motion greatly, and produce unwanted results when the motion file is imported for avatar playback. 

7.2. Keypoint reconstruction 

The problems described in the previous paragraph can be solved by applying methods for missing 
marker reconstruction (due to literature terminology, in this section a marker refers to a keypoint 
not a sensing device). Although the problem of the missing keypoints consists an active research 
area, its solutions have been used for recovering human mocap data. Figure 14 demonstrates how 
such a refinement process can restore missing keypoints (see [4]). 

 

 

Figure 14: Green color: An ideal keypoint detection, Yellow color: An imperfect detection with 
missing keypoints, Red color: Keypoints after a motion refinement process. 

 

A number of methods have been used in literature to solve the missing marker problem. Some of 
them include: the traditional interpolation which constructs new data points within a sequence of 
known data points, matrix factorization where the hierarchy of the body is used to break the motion 
into blocks, dictionary learning which aims at finding a sparse representation of the input data, 
Kalman smoothing which can predict values in a lower dimensional space, and a more recent 
neural network approach which is based on non-linear correlations within data.  



 D3.1 Sign language capturing technology preliminary version  

  

 28 

8.  EXPORT 

This chapter discusses the files that are exported by the capturing technology, their internal format, 
and the EasyTV services that use them. 

8.1. Types of files 

The EasyTV capturing module will finally output a number of different file types. These files are 
essential to other EasyTV services and modules. Examples are the realistic 3D avatar and the 
multilingual ontology. The files are initially uploaded to the crowdsourcing platform and then stored 
into repositories in order to be accessible by these services and modules. Below are some types of 
files that are exported by the capturing module.  

Á Motion files 

These files contain the motion data generated in the detection phase of this module, as described 
in chapter 6. The selection of the right file format affects the simplicity in calculations when creating 
the file and the availability of solutions when importing it for avatar playback. Considering the 
importance of these two aforementioned points, we devote the next section to this topic. 

Á Video files 

These files concern videos containing the frames acquired by the RGB-D sensor. There are two 
types of videos exported: RBG and depth videos. File format can be either .avi or .mp4 (since .avi 
formats are larger than .mp4). They can be used in the validation phase of the crowdsourcing 
process by the moderator of the crowdsourcing platform, as well as, in search options for database 
content retrieval. 

Á Description file 

This file is a sum-up of all the exported files. More specifically, it describes the mapping between 
motion files, video files, and user annotations which ascribe the meaning of each sign. Currently, 
we decided to use XML as the preferred format for these files due to its simplicity and also its 
straightforward API inclusion by most programming languages. 

8.2. Choosing the right file format for motion data 

Among all types of files generated by the EasyTV capturing module, the most important is the one 
containing the motion data. This data has been generated in the detection phase as described in 
chapter 6. Because this file will be used by the EasyTV realistic avatar for the playback of the 
signer's gestures and expressions, the choice of its format is essential.   

There are many file formats for storing motion capture data. Amongst the most famous ones are 
the Biovision's Hierarchical format (BVH), as well as, the more modern and proprietary FBX format 
by Autodesk. Other formats include C3D, V/VSK, and ASF/AMC. A complete list with motion 
formats is given in [24]. These formats are supported by most modern motion capture technologies 
and 3D animation platforms. This makes them an attractive solution to intergate with the EasyTV 
realistic avatar.  

As an example for explaining the structure of a motion capture file format, we will briefly describe 
the BVH format as presented in [5]. In this format, the data is arranged hierarchically, with every 
joint position depending on the previous one. More specifically, the hierarchical section of the file 
starts with the keyword HIERARCHY which is followed by the keyword ROOT and the name of the 
bone that is the root of the skeletal hierarchy. For the definition of each bone, the line delimited by 
the keyword OFFSET refers to the translation of the origin of the bone with respect to its parentôs 
origin along the x, y and z-axis, respectively. The offset is also used for implicitly defining the length 
and direction of the parentôs bone. There is a problem, however, when determining the length and 
direction of bones that have multiple children. In that case, a good choice for determining the 
length of the bone is to use the first childôs offset definition in order to infer the parental bone 



 D3.1 Sign language capturing technology preliminary version  

  

 29 

information and then treat the offset data for other child nodes simply as offset values.  

The other line concerning the boneôs definition, starts with the word CHANNELS and is followed by 
a value that defines the DOFs for the current bone. The channel data is given in the motion section 
at the end of the file. We have to note here that the order with which each channel is seen in the 
hierarchy section of the file, exactly matches the order of the data in the motion section of the file. 
For example, the motion section of the file contains information for the channels of the root bone in 
the order defined in the hierarchy, followed by the channel data for itôs first child, followed by the 
channel data for that child, and so on, through the hierarchy. Also, the order concatenating the 
Euler angles when creating the boneôs rotation matrix needs to follow the order defined in the 
CHANNEL section. The Euler order refers to each bone, therefore different orders for different 
bones could possibly affect the correct looking of an animation.  After the OFFSET and CHANNEL 
lines, the next non-nested lines in the bone definition are used to define child items, starting with 
the keyword JOINT. However, in the case of end-effectors, a special tag is used, i.e., ñEnd Siteò, 
which encapsulates an OFFSET triple that is used to infer the boneôs length and orientation. 

After the definition of the skeletal hierarchy, another section withith the BVH file contains the 
motion information. This includes: the number of frames in the animation, frame rate and the 
channel data. The number of frames and frame rate are represented by two numerical values, 
namely, a positive decimal integer and a positive float, respectively. The rest of the file contains the 
channel data for each bone in the order that they are seen in the hierarchy definition. That is, each 
line of float values represents an animation frame. An example demonstrating the internal structure 
of a BVH file is given in Figure 15. 

 

 

Figure 15: An example BVH file. 

 

Another popular format for storing motion data is the JSON format. This format is similar to XML, 
making it even more practical for integration and usage. Such file format is supported by UNITY 
which is one of the most famous game engines existing. With UNITY, one can develop realistic 3D 
avatars capable of importing JSON files for motion playback. One such example of JSON file is 
presented in Figure 16. More information concerning avatar playback is provided in section 8.5.    



 D3.1 Sign language capturing technology preliminary version  

  

 30 

 

Figure 16: An example JSON file for motion capture data. 



 D3.1 Sign language capturing technology preliminary version  

  

 31 

8.3. Uploading the files to the crowdsourcing platform 

When the files are exported by the capturing module, they must be uploaded to the EasyTV 
crowdsourcing platform in order to be available to other EasyTV services and modules. The 
exported files are the result of a crowdsourcing task that the user has completed. The 
crowdsourcing platform contains a special form for uploading the files. This form is part of the UI 
that concerns the task that is appointed to this user. The different file types make it necessary to 
import one compressed folder instead of a number of different files. After this folder is uploaded, 
the crowdsourcing platform should decompress it, extract the files and proceed to the validation 
process. If the moderator validates the content of the files and accepts them as being the correct 
answer to the given task, the files are stored into the proper repositories. In the opposite case, that 
is, if the moderator rejects the motion capturing for the given task, the user has to repeat the task 
or the task may be assigned to a different user. 

8.4. Input to multilingual ontology 

The capturing module also sends information (via the crowdsourcing platform) of the recorded 
video to the multilingual ontology for the enrichment process being developed in the Task 3.2. A 
first proposal of an exchange JSON format is presented in Figure 17. The JSON file must contain 
information about the language of the recorded video, the oral language sentence that represents 
the video and the sentence composed by the concatenation of signs, which cannot be the same as 
oral language. Moreover, information about each video segment is provided with the start and end 
in the video and their meaning. In addition, an URL where the video is stored should be provided. 

The JSON file will be processed by the easyTV-annotator library to enrich the multilingual sing 
language ontology (see document D3.2 Enriched multilingual ontology with signs in different 
languages preliminary version). The library processes the natural language sentence to retrieve 
linguistic aspects such as the tokens, the part of speech of the words, their lemmas and whether or 
not there is a named entity. This information is needed to find the suitable concepts in the ontology 
that represent each of the words that compose the sentence. Then, the class of the ontology is 
associated with the video segment received in the JSON file.      

 

 

Figure 17: An example of a JSON format for describing Sign Language content. 



 D3.1 Sign language capturing technology preliminary version  

  

 32 

8.5. Avatar playback 

The visualization of the recorded signs will take place via a humanoid avatar. Adobe Fuse CC is 
the 3D computer graphics software that was chosen to create the avatar at least at this preliminary 
stage of development as it is easy to design a desirable character following some basic guidelines, 
especially regarding the quality of signs visibility, i.e., black shirt.  The main advantage of Fuse is 
that the user can choose and modify character components, such as body parts or clothes, in real-
time. Figure 18 illustrates the avatar creation process in Fuse. 

When the design is completed, the character is imported in Mixamo, a 3D software engine related 
to Fuse, in order to use the Rigging service. Rigging is a method to create a skeleton for a 3D 
model by constructing a series of bones so it can be animated and move. Each bone has a three-
dimensional transformation (which includes its position, scale and orientation), and an optional 
parent bone and therefore they form a hierarchy. So, moving a shoulder-bone will move the rest of 
the hand too. The bones are connected with each other through joints. The rigging allows a 3D 
model to be animated in an articulated manner. An articulation is a rotation/translation of a joint 
which moves a connected bone. On the other hand, the pose is a set of joint articulations which 
results in positioning the articulated body. In the case of an avatar, the rigging is the skeleton that 
ties in to the human posture. Mixamo's technologies use machine learning methods to automate 
the steps of the character animation process, including 3D modeling to rigging and 3D animation.  

Another advantage of the software in question is a basic facial animation with blended shapes, 
which can be used for lip sync. Generally facial expressions can be achieved either with bone 
transformation or blend shapes. In the first case, bones can be moved to specific directions and 
the combination of whole movements form an expression. Moreover, the method is based on 
controlling bone rotations when moving between different positions. On the other hand, blend 
shapes create the illusion that one shape changes geometrically into another in a natural-looking 
way. BlendShape is a technique of allowing a single mesh to deform in order to achieve numerous 
pre-defined shapes and any number of combinations of in-between these shapes. Again, the 
combination of blending shapes can animate an avatarôs mouth to open or smile. The final result of 
this procedure is a rigged 3D model with blend shapes, ready to be imported in Unity 3D as 
Mixamo supports the specific platform.  

 

 

Figure 18: Adobe Fuse CC 3D Model. 



 D3.1 Sign language capturing technology preliminary version  

  

 33 

The rigged 3D avatar is imported into Unity3D as an object, ready to be modified. Unity3D is a 
cross-platform game engine used to create both three-dimensional and two-dimensional games, as 
well as, simulations for desktops and laptops, home consoles, smart TVs, and mobile devices. 
Inside the editor of Unity3D the avatar will be modified in order to reproduce the recorded signs. 
Regarding avatarôs rigging, few changes need to be made first in order to give a humanoid aspect 
to the character motion, i.e., definition of a humanoid animation type in the rig option. Files with 
positional data in JSON format, as mentioned before, are loaded into the avatar, pointing out target 
positions for each joint and specific timestamps. Figure 16 shows the specific format in which the 
data is written for Unity3D.  

Inverse Kinematics (IK) method is used in order to make the coordinates of each point reach a 
target configuration. Forward kinematics uses the joint parameters to compute the configuration of 
the pose, whereas inverse kinematics reverses this calculation to determine the joint parameters 
that achieve a desired configuration, having as main objective to reach the desirable position. The 
synchronization of frames per second between recorded data and reproduction is very important 
for a normalized movement. Even if the sync is perfect, an issue may occur regarding the physics, 
resulting in image jitter. In order to offer a smoother image and avoid jittering, interpolation must be 
applied between each different position. The whole process mentioned above consists of a group 
of C# scripts useful for the control for loading data in correct manner, smooth motion and 
synchronization.  

Despite the usage of JSON files, the main objective is to match each recorded keypoint of the body 
detector (as described in section 6.2) to each joint in the rigged body of the avatar. Generally, a 
rigged body in 3D modeling has a root joint which is the base of the structure. Usually for the 
humanoid avatars, the center of the hips constitutes the root joint. However, as it can be seen on 
Figure 9, there is not that kind of keypoint. Moreover there are more keypoints recorded in the 
head which do not exist in the avatar. As a consequence, additional effort must be applied in order 
to avoid wrong reproduction of the recorded signs. An example of a signing 3D avatar is shown in 
Figure 19.   

 

 

Figure 19: Signer avatar interprets the word ñnameò. 

 



 D3.1 Sign language capturing technology preliminary version  

  

 34 

9.  THE EASYTV SIGNER3D APPLICATION 

This chapter presents a first implementation of the EasyTV capturing technology. 

9.1. Overview 

The Signer3D application is the EasyTV motion capture technology. It is a desktop application that 
implements all six phases described in this document. It connects to an RGB-D sensor and 
produces the data required for the other EasyTV services.  

In the following, a brief description about the Signer3D application is presented. This description 
includes an initial design of the graphical user interface, and an outline of the first stages of the 
capturing phases that have been implemented. A more detailed description of the software will be 
given in the final version of the deliverable, that is, ñD3.7 Sign language capturing technology final 
versionò. 

9.2. User interface 

The Signer3D application consists of a user-friendly interface (GUI) that allows the admin of the 
motion capture process to easily capture signs and extract the motion data.  

 

 

Figure 20: A preliminary version of the Signer3D main user interface. 

 

As we can see in Figure 20, the main window of the application includes: 

¶ Application logo. 

¶ Signer viewer: A display screen for visualizing the signer while recording. This is important 
so that the admin can see if the signer is in the right position and his moves do not exceed 
the sensorôs viewing area. Also, the effects that the lighting conditions of the room may 
have on the sensor can be observed. 

¶ Path for file storage: A textbox for defining the folder where data will be written into. This 
data concerns both the acquired images and the final output of the application. 

¶ Button to start recording: The admin starts the image acquisition phase. 



 D3.1 Sign language capturing technology preliminary version  

  

 35 

¶ Button to stop recording: The admin stops acquistion and files are stored in the specified 
folder. 

¶ Button to start annotation: This button proceeds to the annotation phase where the admin 
has to annotate the captured video. 

9.3. Implementing the motion capturing phases 

The Signer3D application implements the phases of capturing as described in the previous 
chapters of this document. In this, initial version of the application, the current state of the phasesô 
implementation is as follows:  

¶ Acquisition: This phase is completed. Both RGB and depth images are acquired by an 
RGB-D sensor and stored as .jpg files in the folder specified by the user in the main window 
of the application. Also, the alignment between RGB and depth frames has been 
accomplished and frames are stored at the same resolution. 

¶ Annotation: User annotation is provided only for the whole video. Isolation of signs and 
synchronized trimming of the videos are not yet supported. 

¶ Detection: In this phase, we analyze RGB data and use 2D keypoint detectors to extract 
keypoints for the hands, face and body of the signer. 

¶ Reconstruction: For the detection process that we followed, the 3D reconstruction phase 
has been implemented. 3D data is formed by exploiting the aligned depth frames.  

¶ Refinement: This phase will be available in the final version of the application. 

¶ Export: The application currently exports the captured RGB and depth video. Motion data is 
also exported in JSON format that can be imported by UNITY as described in section 8.2. 
The description file is not yet supported. 

9.4. First use: creating a database for Greek Sign Language 

The first version of the Signer3D application was used for the creation of a database for Greek 
Sign Language. The database consisted of just RGB and depth images and was created with the 
contribution of the Centre of Greek Sign Language [25] located in Thessaloniki, Greece. The task 
for every expert signer was to perform a set of dialogs, i.e., questions and answers that are 
commonly encountered in Greek public services. Figure 21 shows some photos from that capturing 
process. 

 

Figure 21: Creating a database for Greek Sign Language using the preliminary version of Signer3D. 








